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ABSTRACT 
 

The 2007 report by the Intergovernmental Panel on Climate Change suggested that 
Texas is likely to see a warmer climate, a decrease in mean annual runoff, an increase in 
flow seasonality, and an increase in the number of extreme drought events.  All of these 
are likely to affect the water resources of Texas, including the groundwater resources.  
In our assessment of the susceptibility of Texas’s aquifers to climate change, how quickly 
an aquifer recharges, the geologic setting, and land and water use will dictate how cli-
mate change may affect any given aquifer.  Groundwater resources with high recharge 
rates, such as karstic aquifers like the Edwards (Balcones Fault Zone) Aquifer, and 
highly permeable clastic aquifers, like the Lipan Aquifer, are very susceptible to changes 
in climate while others with much slower recharge rates would not show effects for dec-
ades if not centuries.  The groundwater resources in dipping clastic aquifers—aquifers 
with an unconfined recharge zone updip and a confined zone downdip, such as the Trin-
ity Aquifer north of the Colorado River, the Carrizo-Wilcox Aquifer, and the Gulf Coast 
Aquifer—are unlikely to be affected by climate change influenced recharge as long as 
the flux of water moving downdip remains less than the total recharge rate.  General 
municipal and agricultural water use is expected to increase due to changes in climate; 
however, increases in water use due to expected increases in population in Texas are 
expected to be far greater.  Nonetheless, climate change could induce greater reliance on 
groundwater if surface water resources become less reliable, and increases in agricul-
tural usage would increase the depletion rate of the Ogallala Aquifer and lower water 
levels in other aquifers.  More research is needed to better understand what the climate 
models suggest for Texas and recharge processes. 

 
 

INTRODUCTION 
 
Global climate models predict a warmer planet.  For Texas, this could mean changes to our climate—

specifically temperature, evaporation, rainfall, and drought.  Changes in climate will also likely affect the avail-
ability of our water resources and our plans to meet expected demands for water in the future.  For surface water 
resources, the connection between climate and water availability is clearer and more immediate, although it does 
have its complications, such as changing land use associated with climate change.  With the exception of karstic 
aquifers and highly permeable clastic aquifers—which are similar to surface water systems in their responsive-
ness to climatic variation—much less study and attention has been given to the effects climate change may have 
on groundwater resources. 

The purpose of this paper is to (1) summarize how climate change may affect Texas, (2) discuss how climate 
change may affect groundwater, (3) hypothesize how climate change may directly and indirectly affect the aqui-

Mace, R. E., and S. C. Wade, 2008, In hot water?  How climate change may (or may not) affect the groundwater re-
sources of Texas:  Gulf Coast Association of Geological Societies Transactions, v. 58, p. 655-668. 

655 



 

 Mace and Wade 

fers of Texas, (4) present modeling results on how climate change may affect the Edwards (Balcones Fault Zone) 
Aquifer, and (5) discuss areas of future research needs.  We base our comments on a review of the most recent 
Intergovernmental Panel on Climate Change (IPCC) reports, a review of literature specific for Texas, and our 
understanding of the state’s aquifers—especially with respect to modeling them—over the past decade. 

 
 

CLIMATE CHANGE AND TEXAS 
 
The most recent report from the IPCC stated that “[w]arming of the climate system is unequivocal, as is now 

evident from observations of increases in global average air and ocean temperatures, widespread melting of snow 
and ice, and rising global average sea level” (Bernstein et al., 2007, p. 2).  As far as implications for water re-
sources, the IPCC stated that there will be (1) a “very likely increase in frequency of hot extremes, heat waves, 
and heavy precipitation,” (2) a “likely increase in tropical cyclone intensity,” and (3) “very likely precipitation 
increases in high latitudes and likely decreases in most subtropical land regions” (Bernstein et al., 2007, p. 8). 

The IPCC does not specifically address climate change in Texas; however, the report does include a section 
that focuses on the North American continent.  We used the maps in this section to discern what the IPCC report 
projects for Texas.  The IPCC projects a 2.5-3.5°C (4.5-6°F) increase in surface temperature for much of the 
United States, including Texas, by 2090 to 2099 relative to average temperatures between 1980 and 1999 (based 
on Bernstein et al., 2007, their Figure SPM-6).  Several climate models suggest a 10 to 30 percent decrease in 
mean annual runoff in Texas by the 2050s although one model suggests little effect with a greater than 30 percent 
increase in the southern part of the state (based on Kundzewicz et al., 2007, their Figure 3.3, which in turn is 
based on Arnell, 2003).  An ensemble of 12 climate models suggests that mean annual runoff may decrease 0 to 
10 percent for much of Texas by 2050 with little change along the Gulf Coast (based on Kundzewicz et al., 2007, 
their Figure 3.4, which in turn is based on Milly et al., 2005).  Many studies suggest that flow seasonality may 
increase (Kundzewicz et al., 2007) with more of the total precipitation arriving during the wet season. 

In a recent presentation of preliminary results of statistically downscaled global climate models for Texas, 
Charles Jackson with the University of Texas noted that climate models suggest an average increase in tempera-
ture of about 1.7°C (3°F), an average increase in precipitation of about 1 in (2.5 cm) per year along the Gulf 
Coast and an average decrease of about 0.5 in (1.3 cm) per year for most of the rest of the state (Jackson, 2008).  
Jackson also noted that there is quite a bit of variation between the different climate models on what may be in 
store for Texas, with some models projecting increases in precipitation for the entire state. 

 
 

CLIMATE CHANGE AND WATER—GLOBAL PERSPECTIVE 
 
Transferring the results from global climate models into water resources models can be problematic.  The 

IPCC states that “quantitative projections of changes in precipitation, river flows, and water levels at the river-
basin scale remain uncertain” (Kundzewicz et al., 2007, p. 175).  Climate projections from global climate models 
are not easy to incorporate into hydrological studies (Allen and Ingram, 2002; Kundzewicz et al., 2007) because 
of significant uncertainties in the modeling process (Mearns et al., 2001; Allen and Ingram, 2002; Forest et al., 
2002; Stott and Kettleborough, 2002; Kundzewicz et al., 2007).  The various global climate models tend to agree 
more on geographical changes in temperature than on rainfall (Meehl et al., 2007; Kundzewicz et al., 2007).  
Surface water studies in Great Britain suggest that uncertainty in global climate model structure was the greatest 
uncertainty in predicting flood statistics followed by uncertainty in future CO2 scenarios followed by uncertainty 
in hydrologic modeling (Kay et al., 2006, and Prudhomme and Davies, 2007, both as cited in Kundzewicz et al., 
2007). 

Nonetheless, scientists have looked at where the climate models tend to agree to suggest how climate change 
may affect water resources.  The IPCC stated that (1) “[t]here is high confidence that by mid-century, annual 
river runoff and water availability are projected to increase at high latitudes (and in some tropical wet areas) and 
decrease in some dry regions in the mid-latitudes and tropics” and (2) “[t]here is also high confidence that many 
semi-arid areas (e.g., Mediterranean basin, western United States, southern Africa and northeast Brazil) will suf-
fer a decrease in water resources due to climate change” (Bernstein et al., 2007, p. 8).  It is also “very likely” that 
the frequency of heavy precipitation events will increase leading to adverse effects on surface water and ground-
water quality although water scarcity may be relieved (Bernstein et al., 2007). 
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The IPCC stated with high confidence that the western United States will suffer a decrease in water re-
sources due to climate change (Kundzewicz et al., 2007).  Seager et al. (2007) predicted a new baseline for the 
southwestern United States within the next 100 years that looks like the dust bowl years (with the western half of 
Texas included in his definition of the southwest).  Global climate models predict that larger parts of the planet 
will be under drought conditions at any given time, from 1 to 3 percent currently to 30 percent by the 2090s, and 
that the number of extreme drought events per 100 years will likely increase 2 to 6 times by the 2090s (Burke et 
al., 2006, as referenced by Kundzewicz et al., 2007). 

 
CLIMATE CHANGE AND WATER—TEXAS  

 
There have been several studies on how climate change might affect the water resources of Texas, some of 

which are included in North et al. (1995), a book focused on climate change and Texas (and in the process of 
being updated with more recent analysis).  Ward (1993, as referenced by Ward and Valdes, 1995), assuming a 2°
C increase in temperature and a 5 percent decrease in precipitation, projected a 2 percent decrease in evapotran-
spiration, a 12 percent increase in lake evaporation, a 26 percent decrease in runoff, a 16 percent increase in water 
consumption, and a 36 percent decrease in flows to the coast, all for normal conditions.  

There have also been studies concerning the potential effects of climate change on: 
• the reservoirs in the Trinity, Colorado, and Rio Grande river basins (Schmandt and Ward, 1991, as ref-

erenced by Ward and Valdes, 1995), 
• the Upper Brazos River (Dorman, 2003), 
• the Gulf Coast (Twilley et al., 2001), 
• the Big Bend region (Herbert, 2004), 
• the Brazos River Valley (Wurbs et al., 2005), and 
• general rainfall and temperature across the state (Amick, 2005). 

There has been limited work on how climate change might affect groundwater in Texas.  EPA (1997) noted 
that there could be less recharge to the aquifers of Texas because of climate change.  Much of the rest of the work 
is, not surprisingly, focused on the Edwards Aquifer, a karstic aquifer with a quick response time to changes in 
precipitation.  Loáiciga et al. (1996) noted that the Edwards Aquifer area including the Guadalupe River basin 
(something he referred to collectively as a “regional watershed”) is one of the most vulnerable to climate-change 
impacts in the United States.  Loáiciga et al. (2000) noted that pumping would need to be reduced to 140,000 
acre-ft per year to keep Comal Springs flowing at 100 ft3 (3 m3) per second for a repeat of the drought of the 
1950s (as compared to 165,000 acre-ft per year proposed by Thorkildsen and McElhaney, 1992, for historical 
conditions). 

Chen et al. (2001) also looked at the possible effects of climate change on the Edwards Aquifer and pro-
jected a 1.5 to 3.5 percent increase in municipal demand, 31.3 percent increase in irrigation water requirements, a 
20 to 30 percent decrease in recharge, a 10 to 16 percent decrease in flow at Comal Springs by 2030, and a 20 to 
24 percent decrease in flow at Comal Springs by 2090.  Chen et al. (2001) also noted that trigger levels to protect 
spring flow for endangered species may have to be reduced by 35,000 to 50,000 acre-ft per year by 2030, and by 
55,000 to 80,000 acre-ft per year by 2090. 

 
 

HOW CLIMATE CHANGE MAY AFFECT GROUNDWATER 
 
There has been very little research on the impact of climate change on groundwater (Alley, 2001; Kundze-

wicz et al., 2007).  The IPCC noted that there is no ubiquitous trend in groundwater systems that can be directly 
correlated to climate change, primarily because of the lack of data (Kundzewicz et al., 2007).  We believe this is 
due, in part, to the uncertainties in estimating recharge and teasing out what component of recharge is natural or 
influenced by land use change let alone changes in climate, especially when those changes, current and projected, 
are of a much less magnitude than natural variations.  Furthermore, in many aquifers, it takes time for water to 
reach the water table, and the water that reaches the entirety of the water table represents an integration of past 
climatic conditions over years, decades, and perhaps centuries.  

Climate change could affect groundwater resources by affecting recharge, pumping, natural discharge, and 
saline intrusion.  Some of these effects are direct, and some are indirect.  Recharge is an obvious parameter that is 
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affected by climate change as it is closely tied to precipitation.  If there is more precipitation, there will probably 
be more recharge, and if there is less precipitation, there will probably be less recharge.  According to a global 
study, recharge is expected to increase 2 percent worldwide (Döll and Flörke, 2005).  There is an overall increase 
in recharge because it is expected that there will be an overall increase in global precipitation (more water is in 
global water cycle because of melting ice).  However, just as there will likely be areas with increased precipita-
tion and areas with decreased precipitation, there will be areas with increased and decreased recharge depending 
not only on the precipitation patterns but also on the local hydrogeology.   

The IPCC stated, with high confidence, that groundwater recharge will decrease considerably in the western 
United States (Kundzewicz et al., 2007), although Döll and Flörke (2005) showed that recharge in the southwest-
ern United States is expected to increase 30 percent or more by the 2050s.  For Texas, recharge might decrease 10 
to 30 percent by the 2050s (based on Kundzewicz et al., 2007, their Figure 3.5, which is from Döll and Flörke, 
2005).  However, the analysis by Döll and Flörke (2005) is quite coarse and is, in our opinion, of limited value of 
projecting recharge changes at a regional or local—if not global—basis. 

Effects of climate change on recharge need to consider changes in precipitation variability and inundation 
(Khiyami et al., 2005).  Locally, recharge is a function of the precipitation, both in amount and timing, the soil 
and vadose zone properties, evaporation, and transpiration.  Recharge can also be greatly affected by changes in 
land use, such as going from grassland or woodland to agriculture.  Outside of soil and vadose zone properties, 
climate change is expected to affect all of these factors.  The amount and timing of precipitation was previously 
discussed.  Increases or decreases in evaporation are a function of temperature as well as humidity, which is tied 
to precipitation.  Globally, increased CO2 in the atmosphere is expected to decrease transpiration (Betts et al., 
2007, and Leipprand and Gerten, 2006, both as cited by Kundzewicz et al., 2007); however, transpiration will 
vary locally depending on the local changes in temperature, precipitation, and vegetation type.  Local increases in 
evaporation and transpiration could cause increased salination of soils. 

Some aquifers, particularly karstic aquifers, rely on streams and rivers for a substantial amount of recharge.  
In these cases, climate change effects on surface water and runoff will affect recharge to these aquifers, especially 
if these streams and rivers become ephemeral over time.   

In dipping aquifers with local discharge in the unconfined part of the aquifer and pumping primarily in the 
confined part of the aquifer, climate change may have little to no effect on groundwater resources.  In these aqui-
fers, it is the effective recharge—the water that moves downdip—which groundwater production relies upon.  
Effective recharge is increased through pumping and the capture of intermediate and local groundwater flow 
paths.  If the flux of water through the local flow paths is much greater than the effective recharge, then relatively 
small changes in total recharge will have no effect on downdip pumping.  There would, however, be an effect on 
discharge to springs and streams and rivers, thus effecting surface water resources. 

Climate change is likely to affect pumping in aquifers.  Increases in temperature are expected to increase the 
demand for water unless increases in precipitation offset that increased demand.  The increase in municipal and 
industrial use is likely to be less than five percent by the 2050s (Mote et al., 1999, and Downing et al., 2003, both 
as cited by Kundzewicz et al., 2007).  Global irrigation demand is projected to increase from 1 to 3 percent by the 
2020s and 2 to 7 percent by the 2070s (Kundzewicz et al., 2007).  Note that these increases do not include 
changes in population, which is expected to double by 2060 in Texas (TWDB, 2007).  Decreases in surface water 
supply due to climate change may also increase groundwater use (Kundzewicz et al., 2007).  If surface water 
resources become temporarily or permanently unreliable, then groundwater, generally less susceptible to climate 
variations than surface water, may become the preferred water supply, thus increasing pumping. 

Climate change could also affect the natural discharge of water from aquifers to springs, streams, and lakes.  
Setting aside, for the moment, the effects increased pumping have on natural discharge, a decrease in transpira-
tion with increased CO2 could result in increased spring and base flow to rivers and streams.  However, depend-
ing on how and where the phreatophytes get their water (solely from the saturated zone or a combination of the 
saturated and unsaturated, or vadose zone), increased temperatures and decreased rainfall could increase ground-
water transpiration and thus decrease spring flow and base flow.  Increased pumping due to climate change could 
also appreciably decrease natural discharge and will very likely be the primary driver for decreased natural dis-
charge, especially if groundwater becomes the preferred source of water. 

In coastal settings, groundwater resources may be affected by rising sea levels.  As sea level rises, salt water 
moves inland, decreasing the areal extent of the aquifer and possibly affecting water quality in nearby wells.  This 
is particularly important for shallow aquifers, especially karstic ones.   
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In general terms, the sensitivity of aquifers to climate change is probably related to the residence time of 
water in the aquifer.  Residence time is the average time water spends in the aquifer from subsurface infiltration 
to discharge.  Aquifers with short residence times and young groundwater are likely most sensitive to climate 
change, while aquifers with long residence times are least sensitive.  Residence time is controlled by depth to the 
water table, permeability of the soil and aquifer, hydraulic gradient, and travel distance.  Relative residence times 
can be estimated from the total aquifer storage volume divided by the total volumetric recharge rate.  This gener-
alization does not account for increased pumping due to climate change, which may actually have a greater affect 
on groundwater availability than changes to natural recharge. 

 
HOW CLIMATE CHANGE MAY AFFECT GROUNDWATER IN TEXAS 

 
Major aquifers in Texas range from karstic aquifers such as the Edwards Aquifer to dipping and principally 

confined clastic aquifers such as the Trinity Aquifer north of Austin, and the Carrizo-Wilcox and Gulf Coast aq-
uifers.  The Edwards Aquifer responds rapidly to rainfall events and drought periods while the age of groundwa-
ter in downdip areas of the Carrizo-Wilcox Aquifer can be more than 30,000 years old (Pearson and White, 
1967).  The aquifers in Texas likely to be most affected by climate change are the fractured and karstic aquifers 
such as the Edwards, Hill Country portion of the Trinity, and the Bone Spring – Victorio Peak.  The Edwards 
Aquifer and the upper and middle parts of the Hill Country Trinity Aquifer have thin soil and high permeability.  
Water levels in shallow, high-permeability, clastic aquifers such as the Seymour and the Lipan-Kickapoo are 
sensitive to seasonal changes; therefore, they are also likely to be affected by changes to climate.  Less likely to 
be sensitive to climate change are the low permeability, unconfined, clastic aquifers such as the Ogallala Aquifer 
in the High Plains and the Pecos Valley Aquifer in West Texas.  The dipping, confined aquifer systems such as 
the Carrizo-Wilcox and Gulf Coast aquifer systems that run from southwest to northeast Texas are also not likely 
to be sensitive to climate change.  The regionally dipping aquifers include a recharge zone in the outcrop with a 
local flow system, which will likely be affected by climate change.  However, most of the production comes from 
the deeper confined portions where groundwater is much older (Pearson and White, 1967). 

Following is a discussion on how climate change may or may not affect groundwater resources from the 
major aquifers of Texas as well as several selected minor aquifers. 

 
 

Edwards Aquifer 
 
The Edwards Aquifer is probably Texas’s most vulnerable aquifer and groundwater resource with respect to 

climate change and variability.  The Edwards Aquifer is very responsive to changes in precipitation, which af-
fects water levels, spring flows, and how much water can be pumped out of the aquifer.  Because of protected 
endangered species in San Marcos and Comal springs, pumping is very unlikely to increase in response to climate 
change.  If there is a long-term drying of the climate in south-central Texas, area groundwater users can expect to 
be under more drought restrictions.  See our review of previous work and our own analysis in the following sec-
tion for more information on how the Edwards Aquifer may be affected by climate change. 

 
 

Edwards-Trinity (Plateau) Aquifer 
 
Because of the karstic nature of the Edwards part of this aquifer, we expect the Edwards-Trinity (Plateau) 

Aquifer to be sensitive to changes in climate, especially in Kinney and Val Verde counties.  We do not expect the 
Trinity part of this aquifer to be very sensitive to the direct effects of climate change, especially where it is over-
lain by saturated Edwards sediments; however, the aquifer as a whole may be affected indirectly by municipali-
ties in search of groundwater if surface water resources become unreliable such as what is currently happening to 
San Angelo with the low conservation storage in O. C. Fisher Lake (0 percent of conservation storage) and the O. 
H. Ivie Reservoir (66 percent of conservation storage) (TWDB, 2008). 
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Carrizo-Wilcox Aquifer 
 
Because of its dipping geology and the location of much of its pumping in the confined part of the aquifer, 

groundwater resources from the Carrizo-Wilcox aquifer are unlikely to be directly affected by changes in climate.  
However, if the climate gets drier, there could be indirect effects on pumping.  For example, if the Edwards Aqui-
fer becomes less reliable for San Antonio, the Colorado River becomes less reliable for Austin, the Brazos River 
becomes less reliable for Waco, and the Trinity River becomes less reliable for Dallas and Fort Worth, these cit-
ies may choose the Carrizo-Wilcox Aquifer as a conjunctive source of water (San Antonio and communities to 
the north and south of Austin are already looking to the Carrizo-Wilcox Aquifer as a source of water).  

 
 

Gulf Coast Aquifer 
 
Because of its dipping geology and the location of much of its pumping in the confined part of the aquifer, 

groundwater resources from the Gulf Coast Aquifer are unlikely to be directly affected by changes in climate.  
However, if the climate gets drier, there could be indirect effects on pumping.  For example, if the Nueces River 
becomes less reliable for Corpus Christi and the Trinity River becomes less reliable for Houston, these cities 
could choose additional pumping from the Gulf Coast Aquifer as a conjunctive source of water.  In the past, San 
Antonio has considered groundwater from the Gulf Coast as a source of water.  Any increase in pumping from 
the Gulf Coast Aquifer has to consider the effects of land subsidence, especially in conjunction with rising sea 
levels.  Over the next 100 years, we don’t expect sea level rise to appreciably affect groundwater resources in the 
Gulf Coast Aquifer.  Most groundwater production, even from areas along the coast, is from deeper parts of the 
aquifer that would not be affected by moderate sea level rises. 

 
 

Hueco Bolson Aquifer 
 
Because of its reliance on leakage from the Rio Grande for recharge, the Hueco Bolson is likely to be af-

fected by climate change.  Before there was groundwater development in the El Paso / Juarez area, the Hueco 
Bolson discharged to the Rio Grande.  Recharge to the aquifer on the Texas side of the river before groundwater 
production was not significantly:  about 6000 acre-ft per year (Muller and Price, 1979; Heywood and Yager, 
2003).  However, groundwater pumping caused the aquifer to decouple from the Rio Grande, and the Rio Grande 
is believed to presently contribute about 30,000 to 35,000 acre-ft per year of recharge to the aquifer in the El Paso 
area (Hutchison, 2006).  This has been fortunate because the Hueco Bolson is currently the primary source of 
water to Juarez and contributes from 50 to 90 percent of the water to El Paso, depending on the flows in the river.  
If flows in the Rio Grande, dependant in this area primarily on snowfall in northern New Mexico and southern 
Colorado, decrease, it could affect recharge to the Hueco Bolson.  However, in order for no water to recharge the 
aquifer, there would have to be no water coming down the river, which would be an extreme, if not infrequent, 
case.  Because of the existing uncertainty of flows in the Rio Grande, El Paso is already aggressively managing in 
a conjunctive way and is able to rely on groundwater, including a brackish groundwater desalination plant for 
most of its supply if needed.  Hutchison (2008) showed that El Paso Water Utilities is prepared to provide water 
to its customers for the next 50 years and beyond for the range of current climatic possibilities projected by the 
recent IPCC report. 

 
Ogallala Aquifer 

 
Because of the large amount of pumping relative to recharge (the rate of pumping is six times the rate of 

recharge) and the time it takes for water to reach the water table, the Ogallala Aquifer is presently relatively in-
sensitive to the direct effects of climate change; however, increases in pumping due to a probable drier climate 
will accelerate the depletion of the aquifer.  If surface water resources become less reliable, communities will 
become more reliant on the Ogallala Aquifer, such as what is currently happening with the low volume of water 
in storage in Lake Meredith (at seven percent capacity as of May 2008 [TWDB, 2008]).  If the climate turns drier, 
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recharge through dry land farming would decrease, although there would probably be an overall increase in re-
charge compared to pre-agricultural times because of tilling of the soil.  Scanlon et al. (2007) showed that re-
charge has increased to the Ogallala Aquifer because of agricultural practices.  In those areas currently irrigating, 
we don’t expect much of a change in recharge because farmers would probably compensate for decreased pre-
cipitation with increased pumping at least as long as there is water to pump. 

 
Pecos Valley Aquifer 

 
Because of the low annual rainfall and a thick unsaturated zone comprised of eolian sands, we do not expect 

the Pecos Valley Aquifer, north of the Pecos River, to be affected appreciably by climate changes; however, 
pumping in the aquifer could be affected by nearby municipalities searching for additional water supplies if exist-
ing surface water resources become unreliable.  Groundwater in the Pecos Valley Aquifer south of the Pecos 
River is relatively younger as shown by tritium levels greater than 2 tritium units (Jones, 2008, this volume) and 
therefore may be more susceptible to the affects of climate change on recharge. 

 
 

Seymour Aquifer 
 
Because of its responsiveness to precipitation and drought, the Seymour Aquifer is susceptible to changes in 

climate.  Interestingly, agriculture created this aquifer.  Bandy (1934, as cited by Harden and Associates, 1978) 
and Gordon (1913, as cited by Harden and Associates, 1978) noted that wells in the area in the early part of the 
last century had to extend into the Permian deposits below the Seymour to access water.  Bandy (1934) showed 
that water levels were rising in the Seymour prior to the mid-1930s.  Woods and Hughes (1973) and Harden and 
Associates (1978) hypothesized that the water level rises were attributed to cultivation.  Water levels continued to 
rise in the 1940s, but only slightly.  Then water levels fell due to the drought of the 1950s and have fluctuated 
with pumping and precipitation cycles since then (Harden and Associates, 1978). 

 
 

Trinity Aquifer 
 
Because of its dipping geology and the location of much of its pumping in the confined part of the aquifer, 

groundwater resources from the Trinity Aquifer north of the Colorado River and where it is confined, are unlikely 
to be affected directly by changes in climate.  A drier climate could result in direct and indirect increases in 
pumping from the aquifer; however, artesian pressures are already greatly depleted along the length of the aquifer 
(Mace et al., 1994; TWDB, 2007).  The upper parts of the Trinity Aquifer south of the Colorado River in the Hill 
Country are, similar to the Edwards Aquifer, vulnerable to climate change and variability.  The Upper and Middle 
Trinity aquifers, composed primarily of limestone, respond rapidly to precipitation.  Parts of the Hill Country 
already experience groundwater supply issues during droughts with current use.  If the climate in the Hill Country 
gets drier, groundwater levels can be expected to go even lower and affect even more people.  This effect proba-
bly also applies to the totality of the outcrop area of the Trinity Aquifer, including north of the Colorado River.  
A drier climate would also decrease natural discharge to the local rivers and streams, which in turn would de-
crease recharge to the Edwards Aquifer.  The Lower Trinity Aquifer, because it is almost entirely confined in the 
Hill Country, is not likely to be directly affected by climate change; however, indirect effects of pumping—such 
as the City of Kerrville and others using more groundwater—could serve to increase water level declines. 

 
 

Minor Aquifers 
 
Texas recognizes 21 minor aquifers (TWDB, 2007).  Based on geology, hydrologic setting, and water qual-

ity, we expect the following aquifers to potentially be sensitive to climate change:  Bone Spring – Victorio Peak 
(karstic with a component of recharge dependent on precipitation, including snowfall, in the Sacramento Moun-
tains in New Mexico and recent recharge in the plateau area [Ashworth, 1995]), Brazos River Alluvium (given its 
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symbiotic relationship with the Brazos River), Lipan (high permeable sediments that are responsive to precipita-
tion), Igneous (permeability based on fractures expected to be responsive to changes in precipitation), and Capi-
tan Reef Complex (we hypothesize that at least the western wing of this karstic aquifer may be sensitive to cli-
matic variability). 

EDWARDS AQUIFER AND CLIMATE CHANGE 
 
As mentioned earlier, Loáiciga et al. (1996) noted that the Edwards Aquifer is one of the areas most vulner-

able to climate change impacts in the United States.  Loáiciga et al. (2000) performed modeling analyses of the 
Edwards Aquifer to evaluate the changes to the aquifer assuming a doubling of atmospheric CO2. 

We used GWSIM-IV, the same finite difference groundwater modeling code used by Loáiciga et al. (2000), 
to investigate the possible range of effects of climate change on the San Antonio segment of the Edwards Aqui-
fer.  GWSIM-IV is based on the Prickett and Lonnquist (1971) code and has been calibrated to a range of drought 
and wetter than average conditions in the Edwards (Balcones Fault Zone) Aquifer (Thorkildsen and McElhaney, 
1992).  

We accounted for climate change in the model by scaling monthly recharge from 70 percent to 130 percent 
of the historical value.  Scaling recharge assumes a change in average values, but not a change in seasonal distri-
bution.  We evaluated two pumping scenarios:  (1) historical pumping from 1947 through 1960 (to include the 
1950s drought) and (2) pumping as defined by the critical period management rules in Senate Bill 3 (see Texas 
Legislature, 2007) from 1947 through 1960.  We also assessed the minimum discharge from Comal Springs as a 
function of a fixed pumping amount.  Note that we ran the model from 1934 through 1989 but are only showing a 
subset of the results.  

For historical pumping from 1947 through 1960, model-calculated discharge at Comal Springs ranges over 
about 100 ft3 per second (3 m3 per second) when recharge varies from 70 percent to 130 percent of the historical 
recharge (Fig. 1).  During the wettest periods (Fig. 1), model calculated discharge at Comal Springs ranges over 
about 500 ft3 per second (14 m3 per second). 

Even with critical period management and an assumed increase in recharge, Comal Springs would still go 
dry (Fig. 2).  The model estimates that the springs will go dry for about two years assuming historical recharge, 
less than a year assuming 130 percent of historical recharge, and three years assuming 70 percent of historical 
recharge (Fig. 2).  The critical period management scenario suggests that even if recharge is reduced to 70 per-
cent of historical amounts during a wetter period Comal Springs will not go dry (Fig. 2 after January 1957); how-
ever, the discharge will occasionally drop below 100 ft3 per second (3 m3 per second). 

The results of the minimum discharge versus pumping analysis indicates that if the average recharge is re-
duced to 70 percent of the historical value, then the estimated maximum pumping that would allow a minimum 
Comal Spring discharge of 100 ft3 per second (3 m3 per second) is about 140,000 acre-ft per year (473,000 m3 per 
day) (Fig. 3).  Under average conditions, the estimated maximum pumping that would allow 100 ft3 per second  
(3 m3 per second) is about 180,000 acre-ft per year (608,000 m3 per day).  With 130 percent of historical re-
charge, the estimated maximum pumping would increase to about 220,000 acre-ft per year (743,000 m3 per day) 
(Fig. 3). 

 
 

RECOMMENDATIONS FOR FUTURE STUDY 
 
There are several items that warrant additional research to better understand how climate change may affect 

the groundwater resources of Texas.  First, there needs to be a Texas-specific analysis of the appropriate statisti-
cally downscaled models to quantify temporal and spatial projections of temperature and precipitation.  This 
analysis could be used as the baseline for any future assessments on climate changes’ effects on groundwater.  
For example, our analysis of the Edwards Aquifer could better bound recharge estimates and allow them to vary 
by month according to projected changes in seasonality.  It would also be helpful for there to be a set of projected 
climatic realizations to be used for assessments of impacts to water resources.  Second, there should be additional 
recharge studies on the aquifers of Texas with a focus on the volume of recharge and the time it takes for water to 
percolate from the land surface to the water table.  This would help quantify the relative volumetric effect on 
recharge and how long it would take for a change in recharge to affect the aquifer.  Existing groundwater models 
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Figure 1.  Model calculated discharge at Comal Springs using historical pumping with recharge rang-
ing from 70 percent to 130 percent of historical average. 

Figure 2.  Model calculated discharge at Comal Springs assuming Edwards Aquifer critical period 
management rules with recharge ranging from 70 percent to 130 percent of historical average. 

663 



 

 Mace and Wade 

Figure 3.  Minimum discharge at Comal Springs as a function of maximum pumping for 70 percent, 
100 percent, and 130 percent of historical average recharge. 

for Texas represent recharge as it enters the water table, not as it percolates through the unsaturated zone.  There-
fore, current groundwater models cannot be used to assess how long it will take for climate changes to propagate 
down to the aquifer.  Third, it would be good to better quantify surface water and groundwater interaction to bet-
ter assess how each resource affects the other.  Studies on surface water and groundwater interaction now can be 
used as baseline information for future studies.  And fourth, it would be useful to better quantify how climate 
change may affect drought, especially with respect to intensity and duration.  For example, our Edwards Aquifer 
analysis assumes that the future drought will look similar to the drought of the 1950s.  

These studies would help to better understand how groundwater resources are affected by climate change.  
However, given the natural variability of climate, the uncertainty of recharge estimates, the effects of land use 
changes on recharge processes, and the effects of pumping and pumping variations over time, we may never be 
able to discern the effects of climate change in groundwater systems except on extremely responsive aquifers. 

 
 

CONCLUSIONS 
 
Global climate models project a warmer Texas with probable changes in long-term precipitation with a pref-

erence toward drier conditions.  Not surprisingly, changes in the climate can affect changes in water resources.  
For aquifers, climate change can affect recharge, the amount of pumping, and natural discharge with highly re-
sponsive aquifers being the most affected.  There has only been limited research on how climate change may 
affect Texas’s groundwater resources with most of the existing work focused on the Edwards Aquifer.  Based on 
our experience with the state’s aquifers, we expect that the Edwards, the upper part of the Hill Country portion 
and outcrop areas of the Trinity, the upper parts of the Edwards-Trinity (Plateau), the Seymour, and several re-
sponsive minor aquifers to be susceptible directly to climate change.  We expect the groundwater resources from 
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the other aquifers to be affected minimally by climate change because of their lower responsiveness, dipping 
geology, and/or the amount of pumping as compared to recharge.  However, many of the aquifers not directly 
affected by climate change may be indirectly affected if cities that rely primarily on surface water resources are 
forced to find other sources of water.  The Edwards Aquifer is particularly susceptible to climate change because 
it recharges so quickly and is closely tied to surface water runoff.  Our modeling work with the San Antonio seg-
ment of the Edwards Aquifer suggests that pumping may have to be reduced by about 40,000 acre-ft per year to 
maintain minimum spring flows if recharge declines 30 percent.  Additional research is needed on summarizing 
downscaled climate models for Texas, better representing the flow of water through the unsaturated zone to the 
water table, quantifying how the intensity and duration of droughts may change, and better characterizing surface 
water and groundwater interactions. 
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